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ABSTRACT

The Rodgers Creek-Maacama fault sys-
tem in the northern California Coast Ranges
(United States) takes up substantial right-
lateral motion within the wide transform
boundary between the Pacific and North
American plates, over a slab window that
has opened northward beneath the Coast
Ranges. The fault system evolved in several
right steps and splays preceded and accom-
panied by extension, volcanism, and strike-
slip basin development. Fault and basin
geometries have changed with time, in places
with younger basins and faults overprinting
older structures. Along-strike and succes-
sional changes in fault and basin geometry
at the southern end of the fault system prob-
ably are adjustments to frequent fault zone
reorganizations in response to Mendocino
Triple Junction migration and northward
transit of a major releasing bend in the
northern San Andreas fault.

The earliest Rodgers Creek fault zone dis-
placement is interpreted to have occurred
ca. 7 Ma along extensional basin-forming
faults that splayed northwest from a west-
northwest proto-Hayward fault zone, open-
ing a transtensional basin west of Santa Rosa.
After ca. 5 Ma, the early transtensional basin
was compressed and extensional faults were
reactivated as thrusts that uplifted the north-
east side of the basin. After ca. 2.78 Ma, the
Rodgers Creek fault zone again splayed from
the earlier extensional and thrust faults to
steeper dipping faults with more north-
northwest orientations. In conjunction with
the changes in orientation and slip mode, the
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Rodgers Creek fault zone dextral slip rate
increased from ~2—4 mm/yr 7-3 Ma, to 5-8
mm/yr after 3 Ma.

The Maacama fault zone is shown from
several data sets to have initiated ca. 3.2 Ma
and has slipped right-laterally at ~5-8 mm/yr
since its initiation. The initial Maacama fault
zone splayed northeastward from the south
end of the Rodgers Creek fault zone, accom-
panied by the opening of several strike-slip
basins, some of which were later uplifted
and compressed during late-stage fault zone
reorganization. The Santa Rosa pull-apart
basin formed ca. 1 Ma, during the reorgani-
zation of the right stepover geometry of the
Rodgers Creek—Maacama fault system, when
the maturely evolved overlapping geometry
of the northern Rodgers Creek and Maa-
cama fault zones was overprinted by a less
evolved, non-overlapping stepover geometry.

The Rodgers Creek-Maacama fault sys-
tem has contributed at least 44-53 km of
right-lateral displacement to the East Bay
fault system south of San Pablo Bay since
7 Ma, at a minimum rate of 6.1-7.8 mm/yr.

GEOLOGIC SETTING OF THE
RODGERS CREEK-MAACAMA
FAULT SYSTEM

The transform boundary between the Pacific
and North American plates in northern Califor-
nia (United States) is a wide zone that reflects
eastward migration into the North American
plate and lengthening since the late Tertiary
(Fig. 1). East of the San Andreas fault (the west-
ern boundary of the transform margin) and south
of the subducting Gorda—Juan de Fuca plate,
this wide transform boundary is composed of
mixed structural domains dominated in places
by active extensional right-lateral faults associ-
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ated with releasing bends and strike-slip basins.
The Rodgers Creek—Maacama fault system is
one such domain of extensional right-lateral
faults and releasing bend basins, though the
long-term history of faulting in the area appears
to have included significant compression. Else-
where, the transform boundary zone clearly
includes mixed compressional and extensional
right-lateral faulting. The Bartlett Springs fault
zone west of the Sacramento Valley, for exam-
ple (McLaughlin et al., 1990), is predominantly
a steeply east dipping transpressional fault zone
that includes right-stepped strike-slip basins
(such as the Covelo and Lake Pillsbury basins)
along its length. Clear Lake basin, another com-
plex extensional strike-slip basin (Hearn et al.,
1988), is bounded by northwest-trending faults
that have pre-basin compressional strike-slip
histories (Fig. 1).

The mixed histories of transtension and
transpression associated with the wide trans-
form boundary east of the San Andreas fault are
the consequence of processes operating along
the Pacific, Gorda—Juan de Fuca, and North
American plate boundaries since the Late Mio-
cene (ca. 10 Ma), and in some instances since
much earlier in the Tertiary. These processes
include northward-migrating slab window—
related volcanism associated with migration
of the Mendocino Triple Junction (Dickinson
and Snyder, 1979; Fox et al., 1985; Stanley,
1987; McLaughlin et al., 1994, 1996; Graymer
et al., 2002); large-scale block rotations and
plate motions (Argus and Gordon, 2001;
Wells and Simpson, 2001); and northward-
migrating restraining and releasing bends in
the northern San Andreas fault (Fox, 1976;
Wakabayashi et al., 2004; Wilson et al., 2005).
Other processes that may have indirectly influ-
enced the long-term evolution of the transform
boundary include partial coupling between
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Figure 1. Maps showing the regional setting of the Rodgers Creek—-Maacama fault system and the San Andreas fault in northern Califor-
nia. (A) The Maacama (MAFZ) and Rodgers Creek (RCFZ) fault zones and related faults (dark red) are compared to the San Andreas
fault, former and present positions of the Mendocino Fracture Zone (MFZ; light red, offshore), and other structural features of northern
California. Other faults east of the San Andreas fault that are part of the wide transform margin are collectively referred to as the East
Bay fault system and include the Hayward and proto-Hayward fault zones (green) and the Calaveras (CF), Bartlett Springs, and several
other faults (teal). Fold axes (dark blue) delineate features associated with compression along the northern and eastern sides of the Coast
Ranges. Dashed brown line marks inferred location of the buried tip of an east-directed tectonic wedge system along the boundary between
the Coast Ranges and Great Valley (Wentworth et al., 1984; Wentworth and Zoback, 1990). Dotted purple line shows the underthrust south
edge of the Gorda—Juan de Fuca plate, based on gravity and aeromagnetic data (Jachens and Griscom, 1983). Late Cenozoic volcanic rocks
are shown in pink; structural basins associated with strike-slip faulting and Sacramento Valley are shown in yellow. Motions of major fault
blocks and plates relative to fixed North America, from global positioning system and paleomagnetic studies (Argus and Gordon, 2001;
Wells and Simpson, 2001; U.S. Geological Survey, 2010), shown with thick black arrows; circled numbers denote rate (in mm/yr). Restrain-
ing bend segment of the northern San Andreas fault is shown in orange; releasing bend segment is in light blue. Additional abbreviations:
BMV—Burdell Mountain Volcanics; QSV—Quien Sabe Volcanics. (B) Simplified map of color-coded faults in A, delineating the principal
fault systems and zones referred to in this paper.
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the North American and Gorda—Juan de Fuca
plates and the reactivation of structural wedge—
related thrust faults separating the Mesozoic
basements of the Coast Ranges and northern
Sacramento Valley (Berry, 1973; Wentworth
et al.,, 1984; Wentworth and Zoback, 1990;
Jachens et al., 1995).

However, details of how these processes have
affected evolution of the transform boundary
and associated basins east of the San Andreas
fault are poorly known and data on long-term
slip history and kinematic evolution of most
of the eastern transform boundary zone faults
are largely lacking north of San Francisco Bay,
beyond paleoseismic investigations of Holocene
faulting or geomorphologic studies (e.g., Pren-
tice and Fenton, 2005; Hecker et al., 2005; Lock
et al., 2006). The Rodgers Creek—Maacama
fault system is well suited for detailed study of
this long-term slip history because of its sug-
gested continuity with the creeping Hayward
fault zone south of San Pablo Bay, and because
the fault system displaces thick sequences of
Neogene volcanic and sedimentary layers that
are readily datable and correlatable and useful
in working out fault slip histories.

Based on the potential for constraining
long-term slip rates, we have used frame-
work geologic mapping, new “’Ar/*Ar dating,
and tephrochronology to establish a detailed
chronostratigraphy for interpreting the offset
history of the Rodgers Creek—Maacama fault
system. The timing of faulting and basin forma-
tion is determined from the sedimentologic and
structural relations of interbedded sedimentary
and volcanic units. Configurations of structural
basins that we interpret to have formed during
evolution of the Rodgers Creek—Maacama fault
system are constrained from recent gravity and
aeromagnetic investigations (Langenheim et al.,
2006, 2008, 2010; McPhee et al., 2007). The
amounts of offset and slip rates for the principal
faults of the Rodgers Creek—Maacama fault sys-
tem are determined from best estimates of the
limits of distribution of the displaced volcanic
and sedimentary sequences, including Meso-
zoic bedrock units. We compare the kinematics
of fault zone and pull-apart basin evolution with
laboratory models and determine the contri-
bution of the Rodgers Creek—Maacama fault
system to the total long-term slip budget of the
Hayward fault zone and other faults of the East
Bay fault system.

Geochronology and
Tephrochronology Methods

Samples of Neogene volcanic rocks used to

establish offsets and rates of slip across the Rod-
gers Creek—-Maacama fault system (Table 1)
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were analyzed by “’Ar/* Ar methodology, either
by incremental-heating with a tantalum resis-
tance furnace and molybdenum crucible, or
by laser fusion analysis with a CO, laser. The
“Ar/*Ar analyses were done mainly in the
Menlo Park Geochronology lab of the U.S.
Geological Survey. One sample cited in Table 1
was dated by A. Deino at Berkeley Geochronol-
ogy Center (Wagner et al., 2011). (For details of
dating methodology and mineral separation and
sample processing procedures that apply to the
samples of this study, see Sarna-Wojcicki et al.,
2011; Wagner et al., 2011.)

Samples of volcanic ash used to make strati-
graphic correlations (Table 2) were chemically
analyzed by electron-microprobe analysis,
energy- and wavelength-dispersive X-ray fluo-
rescence, and instrumental neutron activation
methods and compared to the compositions of
other tephra units in a database of ~5500 analy-
ses (Sarna-Wojcicki et al., 2011). Correlations
in Table 2 were established based on similarity
coefficients to tephra units of known ages in the
database. The tephra correlations in this study
are partly reinforced by “’Ar/*Ar ages, but sev-
eral local tephra layers are correlated primarily
on the basis of their geochemical similarities
and stratigraphic positions between well-dated
widespread ash units in the region. The geo-
chemical correlations are not only useful for age
determinations, they also are useful in determin-
ing locations of the eruptive sources, especially
for far-field volcanic eruptions. For a detailed
discussion of the methodology used for tephra
correlations in the northern San Francisco Bay
region, see Sarna-Wojcicki et al. (2011, and ref-
erences therein).

Fault Nomenclature

Figure 1B is a simplified representation of
the hierarchy of fault nomenclature used in this
paper. Our focus is on evolution of faulting east
of the main boundary between the Pacific and
North American plates (the San Andreas fault),
recognizing that the plate boundary is broad and
that relations between the San Andreas and the
strike-slip faults to the east have changed with
time due to northward migration of the main
plate boundary. Here, we focus on two main fault
systems east of the San Andreas fault: the East
Bay and Rodgers Creek—Maacama fault sys-
tems, which are also considered to be linked by
the Hayward and proto-Hayward fault zones of
the East Bay fault system (Fig. 1B). Our study
concentrates only on the part of the East Bay
fault system that extends north of San Pablo
Bay and west of Napa Valley. The Rodgers
Creek—Maacama and East Bay fault systems
include several other fault zones discussed in
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the text and delineated in more detail in Figures
2 and 3 (and other figures). The Rodgers Creek—
Maacama fault system includes both the Rod-
gers Creek and Maacama fault zones.

The proto-Hayward fault zone is largely
transpressional and is located southwest of
Sebastopol and Cotati; it predated initiation
of the Rodgers Creek—Maacama fault system
and contributed to long-term displacement
of the Hayward and Calaveras faults (Figs. 1
and 2). The proto-Hayward fault zone, as used
here, incorporates several local faults and fault
zones, including the Tolay, Bloomfield, Peta-
luma Valley, and Burdell Mountain, discussed
previously (e.g., Wagner et al., 2005; Graymer
et al., 2002; McLaughlin et al., 1996). Sev-
eral recent studies suggest that beginning ca.
12 Ma, the composite proto-Hayward, Hay-
ward, and Calaveras fault zones contributed
to a cumulative offset of ~174 km across the
southern Calaveras fault zone (Graymer et al.,
2002; McLaughlin et al., 1996), though a
somewhat larger total displacement has also
been suggested (e.g., Wakabayashi, 1999).
The amount of long-term displacement is
inferred (1) from correlations of volcanic and
sedimentary rocks at Burdell Mountain (BMV
in Fig. 1) with the equivalent Miocene Quien
Sabe Volcanics and underlying marine strata
(QSV in Fig. 1) southeast of Hollister; (2) from
distinctive offset Cretaceous rocks (McLaugh-
lin et al., 1996); and (3) from an offset north-
ward-younging trend in ages of hydrothermal
mineralization and volcanism across the proto-
Hayward, Hayward, and Calaveras fault zones
of the East Bay fault system (Graymer et al.,
2002; Obradovich et al., 2000; McLaughlin
et al., 1996; Van Baalen, 1995).

The Rodgers Creek—Maacama fault system
splays northeastward from the proto-Hayward
fault zone, and the timing of this splaying is
interpreted to represent initiation of the Rodgers
Creek fault zone and abandonment of the proto-
Hayward as the active extension of the East Bay
fault system.

The southwestern side of the Rodgers Creek—
Maacama fault system consists of the Rod-
gers Creek fault zone, which extends into San
Pablo Bay, and steps southwest beneath the
bay (Fig. 2) to emerge as the right-lateral Hay-
ward fault in the eastern San Francisco Bay
region west of Berkeley (Brown, 1970; Wright
and Smith, 1992; Parsons et al., 2003). North
of Santa Rosa, the Rodgers Creek fault zone
consists of the northern Rodgers Creek fault
zone, which locally is referred to as the Healds-
burg fault segment of the Rodgers Creek fault
zone. The part of the Rodgers Creek fault zone
extending south of Santa Rosa is here referred
to as the southern Rodgers Creek fault zone.
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Santa Rosa and adjacent 7.5’ quadarangles
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in text
# Antiformal axis offset along Rodgers Creek Fault

Figure 3. Strip map of the Rodgers Creek—-Maacama fault system showing geologic features discussed in this paper that are offset across the
Maacama fault zone (M-M’ and M.1; see Fig. 14); the combined Healdsburg and Rodgers Creek fault zones (H-H’; see Figs. 9 and 12) and
across the southern Rodgers Creek fault zone south of Santa Rosa (R-R’; see Figs. 7, 9, and 11). Offset segments of antiform axis discussed
in text are indicated in dark blue (see Fig. 11). Yellow boxes outline offset areas discussed in text and shown in more detail in Figures 9, 11,
and 14. Lines of structure sections A, B, and C (Fig. 5) are shown with heavy blue lines. Geologic units, unit colors, symbols, and abbre-
viations are as in Figure 2, except that all Mesozoic rocks are here combined as one unit (brown). Additional abbreviations of geographic
names include: CL—Cloverdale; GY—Geyserville; HLD—Healdsburg; SR—Santa Rosa; CO—Cotati; TR—Trenton; SBS—Sebastopol;
PET—Petaluma; RV—Rincon Valley; NWSV—northwest Sonoma Valley; BV—Bennett Valley.

Collectively, the southern and northern Rod-
gers Creek fault zones step right, and also go
through a complexly evolved releasing bend
in transferring slip to the Maacama fault zone
northeast of Santa Rosa (Wong and Bott, 1995;
McLaughlin et al., 2005, 2006, 2008; McPhee
et al., 2007; Langenheim et al., 2008). Multiple
strands and segments composing the separate
northern Rodgers Creek and Maacama fault
zones form a right step in which the two fault
zones are subparallel and overlap along strike
for ~40 km between Santa Rosa and Geyser-
ville. A non-overlapping right-releasing bend
and pull-apart structure also links the Rodgers
Creek and Maacama fault zones via the Bennett
Valley fault zone in the Santa Rosa area. For
the purpose of this paper, these right-stepped,
overlapping, and bending links along with other
segments and strands of the Rodgers Creek and
Maacama fault zones define the Rodgers Creek—
Maacama fault system (Figs. 1 and 2).

350

Tertiary and Mesozoic Basement Relations

The Rodgers Creek—Maacama fault system is
underlain by a composite basement that includes
Jurassic to Miocene accretionary rocks of the
Franciscan Complex, Jurassic to early Tertiary
forearc or marginal basin strata of the Great Val-
ley Sequence, and Jurassic mafic igneous rocks
of the Coast Range Ophiolite (Fig. 2). Beneath
the Great Valley, the Coast Range Ophiolite is
considered to be part of the crystalline base-
ment of the Great Valley Sequence. In the area
of this study, however, the ophiolite and lower
part of the Great Valley Sequence are structur-
ally attenuated and complexly interleaved with
Mesozoic and Tertiary rocks of the Franciscan
Complex as a consequence of tectonism that
predated the Rodgers Creek—Maacama fault
system (McLaughlin et al., 1988).

The distribution of distinctive arc-related
rocks and igneous breccias in tectonostrati-

Geosphere, April 2012

graphic terranes of the Coast Range Ophiolite
west of Sacramento Valley suggests that the
ophiolite has undergone at least 240-320 km
of dextral translation subparallel to the northern
California margin (McLaughlin et al., 1988).
At least 66—146 km of this dextral translation
is attributable to Miocene and older faulting
that predated northward migration of the San
Andreas transform to this latitude (McLaughlin
et al., 1988, 1996).

Neogene Sedimentary Rocks

The Rodgers Creek—-Maacama fault system
is developed partly over remnants of a south-
eastward extension of the Neogene Eel River
forearc basin (Nilsen and Clarke, 1989) that
existed in most of northern California prior to
its disruption by strike-slip faulting. Evidence
of a Neogene forearc basin predating 8-9 Ma
in the study area, however, has largely been
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breccia deposit from underlying volcanic rocks
prominently exposed at Cooks Peak along the
southwest flank of Taylor Mountain near Santa
Rosa (Figs. 3-7). Much of the angular rhyo-
dacitic debris is slickensided and some of the
rhyodacitic blocks are >3 m in diameter. The

locally cross-bedded breccia includes steep to
moderately west-dipping lenses of nonvolcanic
rounded fluvial gravel containing Franciscan
Complex—derived clasts. The southeastern expo-
sures of the breccia unit in the Taylor Mountain
area terminate along strike at the southern Rod-

gers Creek fault zone (Figs. 3 [offset element R']
and 7). The breccia is exposed on the northeast
side of the Rodgers Creek fault zone ~28 km to
the southeast, in the Sears Point area (Fig. 3 [off-
set element R], 6A, 6B, and 7; see also Wagner
etal., 2011).

A. West of Rodgers Creek Fault Zone-

Figure 6. Photographs of uplifted fault scarp-related breccia of the Taylor Mountain and Donnell Ranch and Sears Point areas offset across
the southern Rodgers Creek fault zone. (A) West of Rodgers Creek fault zone. Cross-bedded angular breccia in Petaluma Formation along
Warrington Road southwest of Taylor Mountain, (Fig. 3, R’; Fig. 4, stratigraphic section 1; Fig. 5, cross-section C). Breccia was largely
shed from fault scarps bounding underlying rhyolite and dacite of Cooks Peak. In left photo hand of person to left (west) rests on subround
cobble of Franciscan sandstone. Coarse angular material is rhyodacitic debris, locally conspicuously slickensided. In right photo person
points to rounded pebble-sized Franciscan clasts composing a minor (fluvial) component of breccia matrix. Left (west dipping) foreset
beds are visible in both photos. (B) East of Rodgers Creek fault zone. Correlative fluvial deposits on the Donnell Ranch, east of Sears Point
(Fig. 3, R). In photo on left, bedded gravelly fluvial deposits have a tuff-rich matrix; clasts include round to subround Tertiary volcanic
clasts, and nonvolcanic Franciscan-derived clasts are in moderate abundance, in addition to angular rhyolite to dacite clasts identical to
those in the breccia of Warrington Road. In right photo outcrops are composed dominantly of unsorted angular rhyolitic to dacitic debris,
with bedding defined by vertical alternation of coarse and fine material. In both areas separated across the Rodgers Creek fault zone, iso-
lated angular clasts in breccia reach dimensions >3 m.
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EXPLANATION

CLEAR LAKE VOLCANICS

- (01-2.2Ma)

SONOMA VOLCANICS

- ERUPTIVE SEQUENCES

Mount St. Helena(2.5-3.4 Ma)
Napa-Sonoma Valley (~4.0-5.0 Ma)
San Pablo Bay (~5.2-8.0 Ma)

Breccias of Warrington Rd and Sears Pt
(6.7-7.3 Ma)

TOLAY VOLCANICS

- (~8.5-10.6 Ma)

VOLCANICS OF
BURDELL MOUNTAIN

-(11.0 Ma)

*— 36 “°Ar/>Ar locality, number
keyed to Table 1

©-93 Tephra locality, number
keyed to correlation data
in Table 2

Area of numerous closely
spaced tephra samples, locality
numbers keyed to Table 2.

Figure 7. Localities of “’Ar/*Ar ages and tephro-
chronologic analyses of volcanic rocks used in this
study to establish offsets of eruptive sequences of
Sonoma and related volcanics across the Rodgers
Creek-Maacama fault system. The “Ar/*Ar locali-
ties are shown by blue star symbols and numbers,
keyed to map locality numbers in Table 1. Tephra
localities are shown by orange polygon symbols and
numbers, keyed to map locality numbers in Table 2.
Irregular orange circles outline areas of tephra
localities too closely spaced to show individually.
Locality numbers in outlined areas (Franz Valley,
northeast Santa Rosa, Taylor Mountain, and Sears
Point) are shown in labeled boxes with leaders to
specific map areas and are keyed to Table 2. Abbre-
viations for selected faults and place names are as in
Figures 2 and 3.
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Pliocene and Early Pleistocene Deposits

Pliocene and early Pleistocene fluvial and
lacustrine sediments (Figs. 2, 4, and 5) uncon-
formably overlie the Petaluma and Wilson
Grove Formations. East of the northern Rodgers
Creek fault zone, these deposits are compressed
into northwest-trending open folds (Fig. 5,
structure sections A and C). West of the northern
Rodgers Creek fault zone, they are only mildly
warped or undeformed, though water well and
seismic data (Williams et al., 2008; Sweetkind
et al., 2008) suggest that these strata are increas-
ingly tilted and folded deeper in the subsurface.

Gravels of these deposits contain rare to
common obsidian pebbles and generally are
referred to as the Glen Ellen Formation, though
regionally other names are locally applied. Geo-
chemical fingerprinting of the obsidian pebbles
(McLaughlin et al., 2004, 2005, 2008) shows
their derivation is mainly from two widely
separated obsidian sources of different age: one
source area is 2.8 Ma flows and domes in the
Napa and Franz Valleys (Figs. 7 and Table 1,
location 18); the other source is 4.5 Ma flows
in the Annadel area east of Santa Rosa (strati-
graphic column 4 in Fig. 4; Table 1, location
26). The youngest folded deposits of the Glen
Ellen Formation near Santa Rosa include a 0.8—
1.2 Ma ash (stratigraphic section 3 in Fig. 4;
location 72 in Table 2 and Fig. 7; see also Figs.
3 and 5), which correlates geochemically with
the Bishop ash bed or the chemically similar
younger set of the Glass Mountain ash beds
from the Long Valley Caldera on the southeast
side of the Sierra Nevada Mountains (McLaugh-
lin et al., 2008; Sarna-Wojcicki et al., 2000,
2005; Metz and Mahood, 1991).

Obsidian clast provenance and paleoflow
data show that paleodrainage for the Glen Ellen
gravels was largely westward across the Rod-
gers Creek—Maacama fault system, into basins
on the northern and southern parts of the Santa
Rosa Plain (Sweetkind et al., 2008; see discus-
sion of northern and southern Rodgers Creek
fault zone displacement later in this paper).
Though the timing and amount of strike-slip
displacement of the Glen Ellen gravels along
the Rodgers Creek fault zone seem to require
it, the paleoflow and clast size distribution data
show no clear indication that Glen Ellen depo-
sition was concurrent with and controlled by
strike-slip faulting. Perhaps the Rodgers Creek
fault zone at that time was too diffuse and did
not rupture to the surface often enough to create
significant surface fault expression (e.g., basins,
topographic barriers, and sediment transport
channels) that would influence sedimentation
patterns. In contrast, nearby studies (Nilsen and
McLaughlin, 1985; McLaughlin and Nilsen,

1982) documented deposition concurrent with
strike-slip faulting in basin gravels younger than
3 Ma uplifted along the Maacama fault zone.

Pleistocene and Holocene Deposits

Pleistocene deposits that overlie the deformed
Pleistocene and older formations are generally
flat lying and dissected, and may be mildly tilted
locally, for example, as along the west side of
the Santa Rosa Plain (Fig. 8). These deposits are
broadly regarded as younger than the ca. 1.2—
0.8 Ma tephra layer described near Santa Rosa.

Neogene Volcanic Rocks

Abundant volcanic rocks that range in age
from ca. 12 to 1.2 Ma in our study area (Figs.
2, 4, and 5) provide the principal basis for dat-
ing faulting and related deformation. Analytical
data for the **Ar/*Ar ages determined for the
Neogene volcanic units of this study are shown
in Table 1. Tephrochronologic correlations of
numerous chemically analyzed volcanic ash
samples used to constrain stratigraphic rela-
tions and complement the radiometric dates are
in Table 2. The map distributions of the dated
volcanics and correlated tephra layers are in
Figure 7 (keyed to Tables 1 and 2).

The volcanic rocks were largely erupted from
volcanic centers east of, or dispersed along,
the Rodgers Creek-Maacama and East Bay
fault systems (Fig. 1), and are divided by age
into different eruptive sequences intercalated
with the sedimentary units described herein.
As with the regional distribution of Neogene
volcanics in all of the Coast Ranges, the ages
of these volcanics generally young in a north-
eastward direction, but the volcanics are also
displaced right-laterally with associated enclos-
ing and overlying sedimentary units by the Rod-
gers Creek—Maacama fault system. Volcanics
that constrain displacements across the Rod-
gers Creek—Maacama fault system, from oldest
to youngest and from southwest to northeast,
include those of Burdell Mountain, and the
Tolay, Sonoma, and Clear Lake Volcanics. A
tephra layer correlated herein with the Bishop
ash bed or younger set of the Glass Mountain ash
beds, with a far-field eruptive source in south-
eastern California, is recognized at one locality.
Constraints imposed by the Neogene volcanic
rocks on timing and amounts of displacement
for specific faults of the stepover fault system are
included in the discussion of faulting.

Tolay Volcanics and Volcanics of
Burdell Mountain

The oldest volcanic fields in the progression
of northward-younging volcanism (Fox et al.,
1985; Graymer et al., 2002) are the volcanics
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of Burdell Mountain and the Tolay Volcanics
(Fig. 2), which are older than ca. 8 Ma and
are southwest of the Rodgers Creek—Maacama
fault system. These rocks have been displaced a
minimum of many tens of kilometers from their
in-place eruptive centers east of the Hayward
and southern Calaveras faults. Details of these
volcanic units and their displacements along
faults predating the Rodgers Creek—Maacama
fault system were discussed in detail elsewhere
(McLaughlin et al., 1996; Graymer et al., 2002;
Ford, 2003, 2007).

Sonoma Volcanics

The ca. 8.0-2.5 Ma Sonoma Volcanics
(Weaver, 1949; Table 1) are intercalated in
the middle and upper parts of the Petaluma
Formation and in younger Pliocene deposits
dispersed between faults of the Rodgers Creek—
Maacama fault system (Figs. 4 and 5). The
Sonoma Volcanics are informally divided into
age groupings associated with spatially sepa-
rated northward-younging volcanic centers.
The younger volcanic sequences in places over-
lap the older volcanics and pre-Neogene rocks.
In the direction of their younging pattern from
south to north, these informal age groupings
include the San Pablo Bay, Napa Valley, and
Mount St. Helena eruptive sequences. Local
details of the stratigraphy of these volcanic
sequences that were used to constrain displace-
ments and slip rates for faults of the Rodgers
Creek—Maacama fault system, are included in
the discussion of faulting.

RODGERS CREEK-MAACAMA
FAULT SYSTEM

The Rodgers Creek—Maacama fault system
consists of the Rodgers Creek and Maacama
fault zones. The Rodgers Creek fault zone is
divided into the northern Rodgers Creek fault
zone north of the floodplain of Santa Rosa
Creek (locally referred to as the Healdsburg
fault segment) and the southern Rodgers Creek
fault zone south of Santa Rosa Creek floodplain.
In addition, the seismically active Bennett Val-
ley fault zone, northeast and subparallel to the
southern Rodgers Creek fault zone, partitions
slip northeastward from the south end of the
southern Rodgers Creek fault zone toward
the Maacama fault zone. In the Santa Rosa area,
this slip transfer is via the Spring Valley fault
segment of the Bennett Valley fault zone that
forms the eastern boundary of a prominent pull-
apart basin beneath Santa Rosa and Rincon and
Bennett Valleys (Figs. 3, 9, and 10). Significant
transfer of slip between the Maacama and Rod-
gers Creek fault zones occurs across this pull-
apart structure.
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Figure 8. Photographs of nor-
mal faulting exposed on Laugh-
lin Road along the west side of
Windsor basin and the Santa
Rosa Plain. See Figure 3 for
map location. (A) View toward
east from south side of Laugh-
lin Road, at Pleistocene-late
Pliocene fluvial gravels of the
Glen Ellen Formation, uncon-
formably capped by red-orange
Pleistocene paleosol and flat-
lying fluvial terrace gravel.
The capping Pleistocene gravel
forms the surface of Santa Rosa
Plain. Road steps downward at
east side of exposure at location
of normal fault exposure shown
in B and C. Mount St. Helena
and uplands of stepover area
east of Healdsburg segment of
northern Rodgers Creek fault
zone are visible in background.
(B) View of stratigraphy and
steep east-dipping normal fault,
at east side of same roadcut as in
A. Gently west-northwest-tilted
fluvial gravel and tuffaceous
sand and silt of Glen Ellen For-
mation on the west (left) side
of the fault are capped uncon-
formably by thin veneer of
red-orange Pleistocene gravel.
The Pleistocene gravel drapes
across fault scarp and thick-
ens on east side of tilted Glen
Ellen block. (C) Close-up view
of gravel channels truncated
against west side of fault and
of sheared red-orange clayey
Pleistocene gravel draping fault
scarp to east. Hammer for scale
in B and C (handle is ~30 cm
long).
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Figure 9. Map showing detail of link between Rodgers Creek and Maacama fault zones across Santa Rosa pull-apart basin (based on geologic
maps of McLaughlin et al., 2003, 2008). Age of youngest folded Pleistocene—Pliocene deposits that underlie unfolded basin fill constrains timing
of basin opening to ca. 0.8-1.2 Ma or later. The ~6.5-km-long southwest side of the pull-apart basin bounded by the southern Rodgers Creek,

Matanzas Creek, and Bennett Valley fault zones

presumably represents composite displacement since opening of the basin ca. 1 Ma. Similarly,

an ~6.0-km-long length of the Maacama fault zone records slip since opening of northeast side of the basin. Dark gray filled circles are earth-
quake epicenters (Waldhauser and Schaff, 2008). Yellow boxes outline Glen Ellen gravels with Annadel-derived obsidian clasts that constrain
offset across Southern Rodgers Creek and Healdsburg segments of Rodgers Creek fault zone (Fig. 3). D—downthrown; U—upthrown.

Rodgers Creek Fault Zone

As the principal southwestern bounding
fault zone of the dextral right-stepped Rod-
gers Creek—Maacama fault system (Figs. 1-3),
the Rodgers Creek fault zone represents the
earliest and most complexly evolved part of
the stepover system. The fault zone complex-

ity appears to result from at least four fault
zone reorganizations that gave rise to sepa-
rately named faults of different orientations
and rates of right-lateral slip with time. Long-
term slip rates for the Rodgers Creek fault
zone have sequentially changed with fault
zone geometries during these four reorgani-
zations.
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1. Early Basin-Bounding Extensional Faults
These faults bound concealed basins beneath
the Santa Rosa Plain and are not mapped at the
surface everywhere, but are inferred at depth
from gravity data and from local normal faults
draped by fault breccia (Figs. 3, 5, and 9). Basins
buried beneath the Santa Rosa Plain are bounded
on their east sides (Figs. 2, 3, and 5) by a
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Figure 10. Map showing faults of the right-stepped Rodgers Creek—Maacama fault system compared with schematic drawings from labora-
tory models of pull-apart basin evolution (Dooley and McClay, 1997). In lower drawings pull-apart basin geometries are seen to evolve from
right to left: from a basin oriented parallel to the ~30° non-overlapping step between principal basin-bounding strike-slip faults, to a basin
that is roughly box shaped with principal basin-bounding faults at ~90° to each other, to a highly evolved basin geometry controlled by the
amount of overlap (as much as 150° or more) of the principal bounding strike-slip faults. Based on these laboratory observations, the Rodgers
Creek—Maacama fault system exhibits a highly evolved stepover predating ca. 1 Ma, marked by the large overlap along strike of the northern
Rodgers Creek fault zone (Healdsburg segment) with the Maacama fault zone. The Rodgers Creek—-Maacama fault system reorganized with
opening of the Santa Rosa pull-apart basin after 1 Ma (faults involved with reorganization with heavy pink highlight), when the Santa Rosa
pull-apart basin, having a 30° non-overlapping geometry opened, cutting across the maturely evolved, overlapped stepover geometry of the
northern Rodgers Creek and Maacama fault zones. N—northern; S—southern; FZ—fault zone; V—valley; Ck.—Creek.
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900-1400-m-high west-facing basement escarp-
ment that is evident in gravity data (Langenheim
et al., 2008, 2010; McPhee et al., 2007). This
west-facing basement surface is inferred to be
a west-side-down zone of normal faults bound-
ing the Santa Rosa Plain, as shown in Figure 5
(section C-C’). The extensional character of
these early faults is expressed at Cooks Peak
south of Santa Rosa (Fig. 5), where a prominent
7.3-8.0 Ma rhyodacite unit (Table 1, locations
10, 27) is intruded along the Cooks Peak fault
zone (mapped as a west-dipping normal fault by
McLaughlin et al., 2008). The fault here is
draped by the Breccia of Warrington Road and
Sears Point (see discussion of stratigraphy of
Neogene sedimentary rocks) composed of angu-
lar, coarse, blocky, slickensided debris (Fig. 6)
derived from the rhyodacite of Cooks Peak with
minor interbedded fluvial gravel of the lower
Petaluma Formation (Fig. 5; see McLaughlin
et al., 2008). Overlying Petaluma strata contain
two tuffs that are dated as ca. 6.7 Ma (tuff of
Lichau Creek; Wagner et al., 2011) and 6.3 Ma
(the Roblar Tuff; see Table 2). Fault scarp brec-
cias similar to the breccias of Warrington Road
and Sears Point are particularly characteristic of
extensional strike-slip basin margins, and are
well documented in the Ridge Basin of southern
California (Crowell and Link, 1982), the Hor-
nelen Basin of Norway, and along the Maacama
fault zone (the Little Sulfur Creek basins of
Nilsen and McLaughlin, 1985). Although fault
scarp breccia deposits conceivably can form in
compressional settings, they are usually associ-
ated with faulted extensional strike-slip basin
margins, consistent with the strike-slip setting
of the breccias of Warrington Road and Sears
Point. Breccias that might form along the scarps
of thrust faults during basin inversion would
probably not be exposed or preserved due to
crustal shortening and structural burial. A thrust
fault breccia, would be susceptible to entrain-
ment in the fault zone and to being overridden
by the hanging wall of the thrust. The breccia-
draped extensional scarp along the Cooks Peak
fault zone and its suggested westward connec-
tion with the escarpment beneath the Santa
Rosa Plain is thus inferred to mark the open-
ing of a large pull-apart basin between ca. 7.3
and 6.7 Ma (ca. 7.0 = 0.3 Ma). The exposures
of fault scarp breccias we correlate across the
Rodgers Creek fault zone in the Taylor Moun-
tain and Sears Point areas are now separated by
a later stage of faulting along the southern Rod-
gers Creek fault zone.

Discontinuous normal faults are also mapped
along the west side of the Santa Rosa Plain,
including the Laguna de Santa Rosa fault, fault-
ing uncovered in excavations near Sebastopol,
and faulting seen in cuts along Laughlin Road

south of Sonoma County Airport (Figs. 2, 3,
and 8). These faults displace early Pleistocene
and older deposits and are inferred to be linked
to the same extension as normal faults seen on
the east side of the Santa Rosa Plain. They have
been active in the Quaternary, but have rela-
tively minor down-to-the-east displacements
of less than a few meters, and are discontinu-
ous at the surface. These faults are also weakly
expressed in the subsurface based on gravity
data, compared to the major subsurface base-
ment escarpment bounding the east side of the
Santa Rosa Plain (Langenheim et al., 2010;
McPhee et al., 2007). Based on this structural
relief we interpret normal fault displacement
to have been focused along the east side of the
plain and to reflect earliest slip on the Rodgers
Creek fault zone. If this interpretation is correct,
the age of the fault scarp breccias of Warrington
Road and Sears Point constrains the timing of
earliest slip on the Rodgers Creek fault zone to
ca. 7.0 £ 0.3 Ma.

2. Northeast-Directed Transpressional Faulting

Northeast-directed imbricate thrust faults
are mapped southwest of the southern Rodgers
Creek fault zone south of Santa Rosa (McLaugh-
lin et al., 2008), where they underlie Taylor
Mountain and the Cooks Peak fault zone (Figs.
3,5C, and 9). These poorly exposed thrust faults
dip moderately southwest (~35°) and warp and
imbricate the volcanic and sedimentary section.
The thrusts generally place 7.3 Ma and older
volcanics and Petaluma Formation strata on
the southwest side of the Taylor Mountain fault
zone, over 6.3 Ma and younger volcanics and
strata to the northeast. The strike-slip—related,
northeast-directed transpressional motion of
these faults is interpreted to have uplifted and
exposed the former normal fault-bounded mar-
gin of the basins beneath the Santa Rosa Plain.
At the surface, the Taylor Mountain fault zone
(Figs. 3 and 9) is mapped as dipping southwest
beneath the earlier fault scarp breccia-draped
extensional faults of the Cooks Peak fault zone.
In the subsurface (Fig. 5, section C) this thrust
faulting is interpreted to have reactivated faults
of the west-facing extensional basement escarp-
ment beneath the Santa Rosa Plain.

Structural repetition of ca. 5.4 Ma and older
volcanic and sedimentary rocks by closely
spaced faults of the Taylor Mountain fault zone
is indicative that the transpressional faulting
is ca. 5.4 Ma or younger (McLaughlin et al.,
2008). We suggest a similar timing for the onset
of transpression associated with blind thrusts
beneath the Trenton Ridge structural high (Figs.
3, 5B, and 5C; McLaughlin et al., 2008; McPhee
et al., 2007) that divides the Santa Rosa Plain
into the Cotati and Windsor basins (Figs. 2 and
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3). Well-log stratigraphy (Valin and McLaugh-
lin, 2005; Powell et al., 2006; Sweetkind et al.,
2010) and seismic reflection data (Williams
et al., 2008; Sweetkind et al., 2008) show that
growth of the Trenton Ridge began well before
3 Ma and that its uplift and erosion continued
until ca. 1 Ma.

3. Quaternary Rodgers Creek Fault Zone
Transpressional deformation over Taylor
Mountain, the east side of the Santa Rosa Plain,
and beneath Trenton Ridge was followed by a
shifting of slip to dominantly right-lateral, geo-
morphically youthful, steeply dipping faults of
the southern Rodgers Creek fault zone. South-
east of Taylor Mountain and Santa Rosa, the
transpressional Taylor Mountain fault zone
(Figs. 2, 3, 5C, and 9) and basin-bounding
extensional faults of the Cooks Peak fault zone
splay northwest from a local north-northwest
jog in the active southern Rodgers Creek fault
zone. The youngest traces of the southern Rod-
gers Creek fault zone in that area are oriented
~30° clockwise from the trends of the Taylor
Mountain and Cooks Peak fault zones (Figs. 2,
3, 7, and 9). The 7.3-8.0 Ma rhyodacitic vol-
canics of Cooks Peak and overlying fault scarp
breccias of Warrington Road and Sears Point
that are bounded by these splaying faults are
truncated against the southern Rodgers Creek
fault zone (McLaughlin et al., 2008; Figs. 2, 3,
and 9). The recently active fault segments and
the older transpressional and extensional fault
segments, however, are colinear (Figs. 2 and
3) farther to the southeast. Restoration of the
rhyodacitic volcanics and fault scarp breccia of
the Cooks Peak—Taylor Mountain area across
the southern Rodgers Creek fault zone to the
Sears Point area, based on their truncation at
the Southern Rodgers Creek fault zone, together
with an antiformal axis that aligns after restor-
ing offset of the volcanics and breccia (Figs. 3
and 11), suggests that ~28 + 0.5 km of right-lat-
eral displacement is taken up by the combined
Cooks Peak, Taylor Mountain, and more youth-
ful southern Rodgers Creek fault zones. The
28 + 0.5 km dextral displacement of the fault
scarp breccia, rhyodacitic volcanics, and anti-
form axis is inferred to have been taken up since
ca. 7 Ma, first by transtensional slip along the
Cooks Peak fault zone, followed by transpres-
sional displacement along the Taylor Mountain
fault zone, and most recently by steeply dipping
active faults of the northern and southern Rod-
gers Creek fault zones. Relative amounts of the
total strike slip partitioned to the Cooks Peak
and Taylor Mountain fault zones is unknown,
except that the extensional and compressional
styles of these early faults imply that much pre-
Quaternary displacement occurred as dip slip.
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Figure 11. Restoration of 28 km
of long-term offset on Rodgers

McLaughlin et al.

Creek fault zone based on cor-
relation of fault scarp brec-
cias and antiformal axes (in
turquoise) at Taylor Mountain
(TM) and Sears Point (SP),
which may indicate minimum
displacement since ca. 7 Ma.
Gravity contours (in green)
show restored basin geometry
that does not completely align
the gravity lows (hachures)
beneath the Santa Rosa Plain
with those beneath San Pablo
Bay and Sonoma Valley. Com-
pression marked by structural
highs such as Trenton Ridge
and the high between Cotati
and Sonoma basins is not
removed for this reconstruc-
tion, accounting for some of the
mismatch of gravity lows. Pres-
ent position of San Pablo Bay
on east side of Rodgers Creek
fault zone is shown in light blue
for reference. Latitude and lon-
gitude grid is displaced with
restoration of respective blocks
on either side of Rodgers Creek
fault zone. Other abbrevia-
tions: TMFZ—Taylor Moun-
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4. Santa Rosa Pull-Apart Basin

The Santa Rosa pull-apart basin (McLaughlin
et al., 2008; McPhee et al., 2007) is a structure
that defines the most recent stage of Rodgers
Creek—Maacama fault system reorganization.
This pull-apart structure is a young, ~3-km-wide
extensional depression between the Rodgers
Creek and Maacama faults in the Santa Rosa
area, filled with a thin cover of undeformed
Quaternary sediments (Figs. 3, 5B, 5C, 9, 10,
and 12). Faults bounding the east and west sides
of this structure as well as the principal bound-
ing faults of the Maacama and Rodgers Creek
fault zones to the northeast and southwest are
seismically active with prominent microseis-
micity (Fig. 9) extending to depths of ~10 km
and with focal mechanisms indicating pure and
oblique strike slip, with secondary components
of extension or compression. The Santa Rosa
area was severely shaken by two earthquakes
(M5.6 and M5.7) in October 1969 that were
located on the northern Rodgers Creek fault
zone close to the western margin of the Santa
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Rosa pull-apart basin (Wong and Bott, 1995;
McPhee et al., 2007).

The geometry and timing of the opening of
this pull-apart structure affected the long-term
partitioning of slip between the Rodgers Creek
and Maacama fault zones. Undeformed Quater-
nary sediments deposited in the north-oriented
depression of the pull-apart basin unconform-
ably overlie gravels and Sonoma Volcanics in
northern Rincon Valley that are compressed
into a northwest-trending synclinal trough.
This relation is interpreted to indicate that the
pull-apart depression postdates the folding and
formed prior to and during deposition of the
undeformed sediment fill. From the earlier sec-
tion on Neogene stratigraphy, the upper part
of the folded section includes the 0.8-1.2 Ma
Bishop ash bed or an ash correlative with the
younger set of the Glass Mountain ash beds,
erupted from the Long Valley Caldera on the
southeast side of the Sierra Nevada Mountains
(McLaughlin et al., 2008; Sarna-Wojcicki et al.,
2000, 2005; Metz and Mahood, 1991). This con-
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strains opening of the pull-apart basin to after
ca. 1.0 £ 0.2 Ma. The southwestern side of the
Santa Rosa pull-apart basin is bounded partly by
the southern Rodgers Creek fault zone and also
by the Matanzas Creek fault zone, which splays
southeast from the southern Rodgers Creek
fault zone east of Taylor Mountain and merges
with the Bennett Valley fault zone (Fig. 9). The
approximate distance along the parallel trends
of the Matanzas Creek and southern Rodgers
Creek fault zones necessary to close the Santa
Rosa pull-apart structure is ~6.5 + 0.5 km. We
interpret this as the amount of dextral slip taken
up by the Matanzas Creek and Bennett Valley
fault zones during opening of the Santa Rosa
pull-apart basin (Fig. 9).

Similarly, the northeast side of the Santa Rosa
pull-apart basin is bounded for ~6.0 = 0.5 km
(Fig. 9) by faults associated with the south end
of the Maacama fault zone (including strands of
the Maacama and Mark West fault zones). Like
the south side of the pull-apart basin, this length
of the Maacama fault zone that bounds the north
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side of the pull-apart basin is the approximate dis-
tance required to close the north side of the basin.
As such, it is inferred to represent the approxi-
mate amount of dextral strike slip taken up by
the Maacama fault zone during opening of the
pull-apart basin. Thus, the Santa Rosa pull-apart
basin represents a kinematic link between the
Bennett Valley and Maacama fault zones that

Sources of obsidian clasts in gravels of the Glen Ellen Formation

Napa Glass Mountain Obsidian source area (2.78 Ma)—
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zone. The Bennett Valley fault zone converges
with the southern Rodgers Creek fault zone only
south of Sears Point, beneath Sonoma Valley
or San Pablo Bay. The northern Rodgers Creek
fault zone (Healdsburg fault segment), which
is seismically active (Fig. 9) and displays evi-
dence of Holocene surface displacement (Hecker
and Kelsey, 2006; Crampton et al., 2004; Swan
et al., 2003), is seemingly a continuation of the
southern Rodgers Creek fault zone, apparently
bypassing the Santa Rosa pull-apart structure.
The northern and southern Rodgers Creek fault
zones, north-trending faults bounding the west
side of the Santa Rosa pull-apart basin, and the
Matanzas Creek fault zone all merge or intersect
each other beneath Santa Rosa Creek floodplain.
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Northern Rodgers Creek Fault Zone
(Healdsburg Fault Segment)

The Healdsburg fault segment is north of the
Santa Rosa Creek floodplain (Figs. 2, 3, and 9).

Valley fault zone; Fig. 9) link and clearly trans-
fer slip between these faults and the Maacama
fault zone, as indicated by seismicity. Other

Figure 12. Fluvial transport patterns of different obsidian clast-bearing lithofacies of the Glen Ellen Formation that are offset by the combined northern (NRCFZ) and

southern (SRCFZ) Rodgers Creek fault zones. One gravel lithofacies sourced from east of the Maacama fault zone (MAFZ) contains obsidian clasts (dark blue dots) from
place 4.5 Ma vitric Sonoma rhyolites in the Annadel State Park area east of the southern Rodgers Creek and Bennett Valley (BVFZ) fault zones. The distribution of Annadel-

derived clasts in gravels west of the NRCFZ and SRCFZ delineate a crude paleotransport channel (PC) ~2.5-3.0 km wide at its truncation on the southwest side of the NRCFZ
(H; also Figs. 3 and 9). A remnant of the paleochannel is offset ~14.8 + 6.0 km southeastward across the SRCFZ (H’; also Figs. 3 and 9). Yellow bar lengths indicate assigned

2.78 Ma in-place Sonoma Volcanics in the Franz Valley and the Napa Glass Mountain areas. Another major source of Glen Ellen gravel obsidian clasts (dark red dots) are in-
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seismicity and youthful fault geomorphology
are dispersed along and between an overlap in
the along-strike trends of the northern Rodgers
Creek and Maacama fault zones northwest of
Santa Rosa (Fig. 9). Faults that may accom-
modate the partitioning of slip to the northern
Rodgers Creek fault zone include the likely
link between the southern and northern Rod-
gers Creek fault zones beneath the Santa Rosa
Creek floodplain; the Matanzas Creek fault and
earlier extensional and transpressional faults
that disrupt Neogene volcanic and sedimentary
units north and south of the Santa Rosa Creek
floodplain. Several faults mapped east of the
northern and southern Rodgers Creek fault
zones (McLaughlin et al., 2004, 2008) exhibit
strike slip, reverse slip, and normal slip, but
their contributions to the Maacama or northern
Rodgers Creek fault zones are largely unknown
(McLaughlin et al., 2002).

Displacement on the northern Rodgers Creek
fault zone (Healdsburg fault segment) and its
rate of slip north of Santa Rosa since 1 Ma are
currently unconstrained by the bedrock geol-
ogy. A longer term displacement history can be
determined for the Healdsburg fault segment
and southern Rodgers Creek fault zone between
ca. 3 and 1 Ma, however, assuming that they
were continuous prior to opening of the Santa
Rosa pull-apart basin.

Correlative gravel remnants of the Glen Ellen
Formation that now are separated right-laterally
across the northern and southern Rodgers Creek
fault zones are dated as younger than 2.8 +
0.02 Ma from their contained obsidian clasts and
a younger than 3.1 Ma basal tuff (Fig. 3, areas
H and H"). The gravel remnants were therefore
apparently right-laterally separated across the
Rodgers Creek fault zone after ca. 3 Ma. The
outcrop separation, however, does not provide
a well-defined piercing blob for establishing
fault displacement because the gravel remnant
east of the Rodgers Creek fault zone is now iso-
lated on a ridge top ~2 km from the main fault
zone and because the original gravel distribution
has been modified by dissection and erosion.
However, the presence in the gravel of obsid-
ian clasts derived from in-place sources in the
Annadel State Park area to the northeast (loca-
tion 26, Table 1) is distinct from other gravels
of the Glen Ellen Formation east of the Rod-
gers Creek fault zone that contain only obsidian
clasts sourced from the Napa and Franz Valley
areas (locations 18, 20, Table 1). The correla-
tive gravel remnant along the southwest side of
the Rodgers Creek fault zone (Figs. 3 and 12,
offset points H, H’) is the northwesternmost
area of known Annadel-sourced obsidian clasts
southwest of the Rodgers Creek fault zone. The
distribution of several other Glen Ellen gravel
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localities containing Annadel-sourced obsidian
clasts on the Santa Rosa Plain to the southwest,
together with paleoflow data, constrains the
aerial configuration of the fluvial system that
transported this lithofacies from the Annadel
area (McLaughlin et al., 2005; Sweetkind et al.,
2008, 2010). The distribution of the Annadel
lithofacies on the Santa Rosa Plain suggests
that the fluvial transport system may have had
a width of ~2.5-3.0 km where it crossed the
Rodgers Creek fault zone (Fig. 12). Using this
width to crudely constrain that of the Annadel-
sourced fluvial system for our one locality east
of the southern Rodgers Creek fault zone, and
assuming that the gravel at this exposure was
deposited in a 3-km-wide paleochannel, per-
mits a crude restoration of dextral displacement.
Based on this restoration (Fig. 12), we estimate
that the Annadel-sourced gravel remnants are
offset ~14.8 + 6.0 km across the northern and
southern Rodgers Creek fault zones.

Rodgers Creek Fault Zone Slip Rates

Paleoseismology studies since the 1990s
along the Rodgers Creek fault zone south of
Santa Rosa provide a Holocene slip rate esti-
mate for the southern part of the Rodgers Creek
fault zone of 6.4-10.4 mm/yr, with an aver-
age rupture recurrence of 131-370 yr (Hecker
et al., 2005; Budding et al., 1991). In addition,
recent satellite-based permanent scatterer inter-
ferometric synthetic aperture radar (PS-InSAR)
studies (Funning et al., 2007) suggest that to
the northwest and southeast of the Santa Rosa
pull-apart basin, the Rodgers Creek fault zone is
undergoing as much as 7.5 + 2.6 mm/yr of shal-
low creep above a depth of 6 km.

Long-term slip rates for several time windows
during evolution of the Rodgers Creek fault zone
between ca. 7 and 0.8 Ma are inferred here, from
displacement constraints on the several faults
described here (Table 3). As the geometry and
style of faulting associated with the Rodgers
Creek fault zone evolved, the components of
normal and reverse slip on early faulting stages
appear to have increasingly been taken up by
younger, steeper faults that accommodated larger
components of right-lateral strike slip.

The 28 + 0.5 km of total minimum offset
estimated for the Rodgers Creek fault zone
(Table 3) is partitioned between the combined
active southern Rodgers Creek and northern
Rodgers Creek fault zones, thrust faults that par-
titioned and uplifted the east side of the Santa
Rosa Plain between ca. 5 and 3 Ma, and ear-
lier extensional faults bounding the east side of
Cotati basin (Fig. 13; Table 3). Approximately
13.2 £ 1.8 km of strike-slip displacement
appears to have predated the later than 2.78 +
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0.02 Ma deposition of gravels offset along the
combined southern and northern Rodgers Creek
fault zones (Table 3). The unconstrained parti-
tioning of this 13 km of slip could be taken up
in part by the early transpressional faults (e.g.,
Taylor Mountain fault zone, active between
5 and 3 Ma) and extensional (probably trans-
tensional) faults (e.g., Cooks Peak fault zone,
active between ca. 5 and 7 Ma) that splay north-
westward on Taylor Mountain from their junc-
tion (Figs. 3, 9, and 13) with the active southern
Rodgers Creek fault zone.

The Santa Rosa pull-apart basin that initi-
ated a well-delineated link of partitioned slip
between the Bennett Valley and Maacama fault
zones via the Spring Valley fault (Fig. 9) is not
clearly linked to the Rodgers Creek fault zone at
the surface. If the Matanzas Creek fault zone
existed prior to ca. 2.8 Ma, unknown additional
slip could have transferred between the northern
Rodgers Creek and Bennett Valley fault zones
via the Matanzas Creek fault zone. The north-
ern Rodgers Creek fault zone (Healdsburg fault
segment) may currently take up all southern
Rodgers Creek fault zone slip, but complexi-
ties along the junction of the Rodgers Creek
fault zone with the Santa Rosa pull-apart basin
discussed here (Fig. 9) and lack of a recognized
offset exclusively along the northern Rodgers
Creek fault zone (Healdsburg fault segment)
leads us to consider the northern Rodgers Creek
fault zone slip rate since ca. 1.0 = 0.2 Ma as
unconstrained.

Based on these offset relations and an
assumption that the earliest phase of extensional
deformation for the Rodgers Creek fault zone
included a component of dextral slip, the com-
posite long-term slip rate of the Rodgers Creek
fault zone since opening of the Cotati basin is
28 +£0.5kmin7.0+0.3 m.y., or4.1 = 0.3 mm/yr
(Table 3).

If the early phase of extensional deformation
did not accommodate any of the long-term dex-
tral displacement (a permissive but unproven
interpretation), it can be argued that all strike
slip on the fault zone has occurred since the
initiation of transpression ca. 5 Ma. This lat-
ter interpretation would yield a higher com-
posite long-term slip rate of ~5.6 mm/yr, which
is similar to rates derived here for the more
recent time windows of fault zone evolution
and is compelling for that reason. Normal faults
bounding the west side of the Santa Rosa Plain,
however, have orientations slightly oblique to
the direction of regional extension, suggesting
a component of transtension during the early
extensional basin phase of fault zone evolution
that would contribute to and result in a lower
composite long-term rate of strike slip. Both
options for modeling early slip suggest that sig-



Downloaded from geosphere.gsapubs.org on May 9, 2012

Evolution of the Rodgers Creek—Maacama fault system

TABLE 3. DISPLACEMENTS AND SLIP RATES OF FAULTS OF THE RODGERS CREEK-MAACAMA FAULT SYSTEM
AND THEIR CONTRIBUTION TO LONG-TERM SLIP OF THE HAYWARD-CALAVERAS FAULT SYSTEM

Amount of dextral Dextral slip
Timing of displacement displacement rate
Fault zone (Ma) (km) (mm/yr)
Rodgers Creek fault zone* 7.0+0.3t00 >28+0.5 41+03
Pre—Santa Rosa pull-apart basin®™ 70+03t01.8+1.0 132+1.8 28+1.1
Northern and southern Rodgers Creek
fault zones, post-Glen Ellen 2.78+0.02t0 0 148 +6.0 53+22
Formation™*
Bennett Valley and Matanzas Creek fault
zones' 1.0+02t00 6.5+0.5 6.8+1.8
Maacama fault zone$
A3.17+0.04t0 0 17.5-24 (20.8 + 3.3) 6.7+1.2
B3.17 +0.04to 0 21-22 (21.5+0.5) 6.9+0.4
C3.17+0.04t00 12-26 (19+7) 6.0 +2.3
Pre-Santa Rosa pull-apart basin slip$$ 3.17+£0.04t01.0+0.2 12.0-17.6 (14.8 £ 2.8) 7.0+2.1
Slip since opening of Santa Rosa pull-
apart basin 1.0+0.2t00 6.0+0.5 6.3+1.8
Total slip partitioned to Hayward-Calaveras
fault systemsss 7.0+0.3t00 44.4-52.5 (48.4 +1.4) 6.95 + 0.85

2.78 + 0.02 and 1.0 + 0.2 Ma).

of Santa Rosa pull-apart basin.

less slip since 1.0 + 0.2 Ma.

*Total cumulative displacement for the Rodgers Creek fault zone includes significant but unknown components of early
normal slip (Cooks Peak fault zone) that occurred with inferred opening of a transtensional basin beneath Santa Rosa Plain
7.0 + 0.3 Ma. Extensional faulting was followed by east-directed reverse faulting (Taylor Mountain fault zone) that uplifted
the east side of Santa Rosa Plain and reactivated the normal faults as thrusts.

**Displacement on northern and southern Rodgers Creek fault zones is based on total Rodgers Creek fault zone
displacement less amount of displacement of Annadel-sourced gravels deposited after 2.80 Ma and before 0.8 Ma (between

***Displacement on northern and southern Rodgers Creek fault zones since 2.78 + 0.02 Ma is based on offset constraints
for Annadel-sourced gravel lithofacies of Glenn Ellen Formation.
fQuaternary fault displacement, interpreted as distance required to close south side of the Santa Rosa pull-apart basin
depression along the Bennett Valley and Matanzas Creek fault zones. Displacement probably contributes to total slip of the
Rodgers Creek fault zone south of Sears Point, and links with Quaternary Maacama fault zone displacement on north side

STotal offset determinations for Maacama fault zone: (A) Timing of faulting and amount of displacement are determined
from dated offset Sonoma Volcanics. Displacement includes 6.0 + 0.5 km of slip from opening of the north side of Santa
Rosa pull-apart basin. (B) Maximum amount of displacement determined from offset of Mesozoic Coast Range Ophiolite.
Timing of faulting is assumed from displacement that is similar to that for offset Sonoma Volcanics (see A). (C) Maximum
displacement inferred from magnetic anomalies correlated across Maacama fault zone. Timing of faulting is assumed similar
to that for offset of Coast Range Ophiolite (see B).

$SPre-Santa Rosa pull-apart basin slip displacement for Maacama fault zone is based on offset Sonoma Volcanics (see A)

$$Maximum and minimum long-term displacements for the Maacama fault here are averages of summed maximum and
minimum displacements of the Sonoma Volcanics, Coast Range Ophiolite, and offset magnetic anomalies (see notes A-C).
Range in maximum slip attributed to the Rodgers Creek—Maacama fault system is therefore 28 + 0.5 km added to the range
of the averaged maximum and minimum long-term slip values (20.4 + 3.6 km) for the Maacama fault zone.

nificant fault displacement during early stages
in the evolution of the Rodgers Creek fault zone
was translated into vertical slip, reducing the
derived long-term rate of strike slip.

The composite long-term slip on the Rodgers
Creek fault zone before 0.8-1.2 Ma is 13.2 +
1.8 kmin 5.2 £ 1.3 m.y., or 2.8 = 1.1 mm/yr.
Though not transferred to the Rodgers Creek
fault zone north of Sears Point, displacement
on the Bennett Valley and Matanzas Creek
fault zones since the 1.0 = 0.2 Ma opening of
the Santa Rosa pull-apart basin appears to have
been ~6.5 0.5 km at arate of ~6.8 + 1.8 mm/yr.
This slip rate is significantly higher than for the
somewhat earlier faults of the Rodgers Creek
fault zone in the Santa Rosa area.

The lithofacies of the Glen Ellen Formation
containing obsidian pebbles derived both from

Annadel and sources in the Napa and Franz
Valleys is offset 14.8 + 6.0 km across the com-
bined northern (Healdsburg fault segment) and
southern Rodgers Creek fault zones, which are
inferred to have been more continuous prior to
formation of the Santa Rosa pull-apart basin.
The displacement of these Glen Ellen Forma-
tion gravels yields a slip rate of 5.3 + 2.2 mm/yr
since 2.76-2.80 Ma, which is also higher than
for the 3 Ma and older composite faulting on
the northern and southern Rodgers Creek fault
zones. The composite slip rate for the Rodgers
Creek fault zone thus appears to have increased
prior to ca. 3 Ma, close to when transpression
along the Taylor Mountain fault zone largely
ceased and slip splayed eastward onto a newly
initiated, dominantly strike-slip Rodgers Creek
fault zone (Fig. 13). Faults of the currently
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active Rodgers Creek fault zone are subvertical
in geometry and clearly accommodate domi-
nant dextral strike slip (Wong and Bott, 1995),
consistent with a comparatively higher observed
rate of strike slip since 3 Ma.

Is All the Long-Term Rodgers Creek Fault
Slip Accounted for?

If our proposed 7 Ma timing for initiation
of slip on the Rodgers Creek fault zone is not
valid, total slip on the Rodgers Creek fault zone
could be significantly greater than 28 km, since
no constraints on offset of units older than ca.
8 Ma are determined. Restoration of the off-
set breccia of Warrington Road to the brec-
cias exposed near Sears Point is the minimum
displacement needed to restore these rocks to

363



Downloaded from geosphere.gsapubs.org on May 9, 2012

0 Ma
1 Ma
3 Ma
™ \ Ne %@
=2 <3 ru,
Q_60km Q. 60km

McLaughlin et al.

p
ﬁ;

1 Ma Present

0 51015 20km
||

Figure 13. Schematic maps showing successive reorganizations of the Rodgers Creek—-Maacama fault system with time in relation to adja-
cent northward migration of restraining and releasing bend geometries of the northern San Andreas fault zone in the wake of the Mendo-
cino Triple Junction. F.Z.—fault zone; U—upthrown; D—downthrown. Time windows are shown beginning ca. 7 Ma, with formation of
the buried transtensional basin beneath Santa Rosa Plain. The fault system is seen to undergo successive reorganizations in response to the
encroachment and passage of the releasing bend segment of the San Andreas fault zone between 7 Ma and the present. Continual north-
ward lengthening of the transform margin imposes significant changes in fault geometry on the area east of the Mendocino Triple Junction
because of the bending northern San Andreas fault geometry. In detail, the succession of compressional and extensional deformation in
evolution of the Rodgers Creek—-Maacama fault system appears to be a necessary response at the south end of the fault system to continual
fault zone lengthening and reorganization at its northern end as the Mendocino Triple Junction propagates. Active faults for indicated time
windows are shown in red; inactive faults in blue. Purple double-pointed arrows indicate orientation of active extension (arrows point away
from each other) or compression (arrows point toward each other). Double-pointed blue arrows show inferred areas of formerly active
transtension or transpression. Green and dark gray circle symbols bisected by the Rodgers Creek and Maacama fault zones are arbitrary
reference points illustrating offset across the Rodgers Creek (green circle) and Maacama (dark gray circle) fault zones, based on displace-

ments established in this paper (Table 3).

their predisplacement location because the area
southeast of Sears Point and Donnell Ranch is
covered by alluvium and the San Francisco Bay
margin. Although we have correlated the axes
of antiformal features across the Rodgers Creek
fault zone in addition to the offset fault scarp
breccias (Figs. 3 and 11), this alignment is pos-
sibly fortuitous and the breccia of Warrington
Road might restore farther south, to somewhere
along the buried southern margins of Sonoma
Valley or San Pablo Bay basins. The gravity
expression of closure for Cotati and Windsor
basins (Fig. 11; Table 3) suggests that an addi-
tional 24 km of slip along the Rodgers Creek
fault would bring the northeast side of Windsor
basin into alignment with the southwest side of
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Sonoma and San Pablo Bay basins along the
Rodgers Creek fault zone (Fig. 11). This would
increase the maximum slip on the Rodgers
Creek fault zone to ~52 km and raise the long-
term slip rate to ~7.7 = 0.6 mm/yr, assuming the
same timing of initiation of the faulting.

This larger displacement based on align-
ment of gravity-defined basin margins, how-
ever, implies that the Cotati and Windsor basins
should include thick sections of the Coast Range
Ophiolite overlain by Great Valley Sequence
rocks as well as Tertiary strata that predate the
Petaluma Formation, all of which occur in the
Sonoma and San Pablo Bay basins (Wright
and Smith, 1992). Significant sections of Great
Valley Sequence and Coast Range Ophiolite are
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exposed along the northwestern margins of the
Santa Rosa Plain and project beneath the Wind-
sor and Cotati basins. However, the deepest
drilled wells, which are in Cotati basin (~1530—
1820 m), bottomed in sedimentary rocks inter-
preted to be Franciscan Complex sandstone
and argillite, with no intervening Coast Range
Ophiolite or Great Valley Sequence. With the
exception of oil having a Miocene Monterey
Formation geochemical signature (Lillis et al.,
2001), no actual pre-Petaluma Tertiary strata
are known. An offset substantially greater than
28 km would also misalign the correlative fault
scarp breccias of Warrington Road and Sears
Point by 24 km along the Rodgers Creek fault
zone, with no data from the intervening covered
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area to corroborate their continuity. Without
more information on the subsurface distribution
of the fault scarp breccias of Warrington Road
and Sears Point beneath Sonoma Valley, the
larger displacement and greater slip rate are here
considered highly speculative. The lower long-
term displacement and slip rate proposed here
are therefore favored, but viewed as a minimum.

Maacama Fault Zone

Displacement across the Maacama fault
zone is estimated from several cross-fault cor-
relations of distinctive units of the Sonoma
Volcanics, Neogene gravels, and Mesozoic
basement rocks. The most definitive estimate
of long-term Neogene offset comes from the
correlation of exposures of Sonoma Volcanics
belonging to the Mount St. Helena eruptive
sequence and associated distinctive fluvial
strata (Fig. 7). The volcanics were vented
from an area of flows, domes, intrusive vents,
thick ash, and laharic breccia deposits that are
exposed for ~11 km along the east side of the
Maacama fault zone.

The northwesternmost and youngest out-
crop areas of Sonoma Volcanics occur between
the northern Rodgers Creek and Maacama
fault zones (areas M.1 and M’, Figs. 3 and 7).
Together, these outcrop areas of Sonoma Vol-
canics constrain the maximum northwestward
extent of Sonoma volcanism and seemingly also
limit post-3.2 Ma offset across the Maacama
fault zone.

The northwesternmost and youngest of these
exposures are ~2 km southwest of the Maacama
fault zone just northwest of Geyserville (M.1,
Fig. 3). These dacitic volcanics are apparently
the youngest of the Sonoma Volcanics, with
a “Ar/PAr age of 2.5 + 0.09 Ma (location 1,
Table 1; Fig. 7). No Sonoma Volcanics of
equivalent age (2.5 Ma) have been mapped on
the northeast side of the Maacama fault zone,
although they could be present in undated, strati-
graphically high parts of the Mount St. Helena
volcanic section. Alternatively, the 2.5 Ma
dacitic rocks represent a small volcanic center
that was not offset by the Maacama fault zone,
that erupted separately from and slightly north-
west of the Mount St. Helena eruptive sequence.
Somewhat younger rhyolitic volcanics of Pine
Mountain (location 15, Table 1; Fig. 7), dated at
2.2 +0.029 Ma, that occur east of the Maacama
fault zone and northwest of Mount St. Helena,
are considered part of the younger Clear Lake
volcanic field, and this constrains the north-
western extent of Sonoma volcanism east of the
Maacama fault zone.

A second area of youngest and most north-
westward displaced exposures of Sonoma Vol-

canics is exposed to the southeast of the Geyser-
ville volcanics for ~5 km along the southwest
side of the Maacama fault zone (Figs. 7 and 14).
These rocks are best exposed in the southeast-
ern parts of these exposures, in roadcuts east of
Alexander Valley (fault length M” in Figs. 3 and
14; also locations 16 and 69 in Fig. 7; Tables
1 and 2). At this locality, a west-dipping sec-
tion of ash flow and air-fall tuff unconformably
overlies basaltic andesite. The volcanics in turn
overlie steeply dipping or folded Pliocene flu-
vial siltstone and pebble gravel composed of
rounded to subrounded clasts derived entirely
from mélange of the Mesozoic Franciscan
Central belt and the Coast Range Ophiolite.
The gravels contain no clasts derived from Ter-
tiary volcanics, distinguishing them from other
3.2 Ma and older gravel units of the region. The
gravel, basaltic andesite, and tuff section abuts
the southwest side of the Maacama fault zone
along the Geysers-Healdsburg road. The tuff
is dated by “Ar/*Ar analysis of plagioclase
at 3.17 = 0.04 Ma (isochron age, location 15,
Table 1; location 69, Table 2; Figs. 7 and 14).
The lowermost tephra layers in the tuff section
correlate geochemically with the Putah Tuff,
dated elsewhere at 3.34-3.27 Ma and the upper-
most ash-flow tuff of the section is correlated to
tephra layers dated elsewhere at 3.25-3.19 Ma
(McLaughlin et al., 2005, and this paper). Thus,
the ash section was erupted in a relatively short
time interval between ~3.3 and 3.2 Ma.

We correlate the part of the Mount St. Helena
eruptive center abutting the Maacama fault
zone for ~5-6 km along the southwest side
of Franz Valley (fault length M in Figs. 3, and
14; McLaughlin et al., 2004) with the Geysers-
Healdsburg road volcanics and gravels. Corre-
lated tephra units and Ar/Ar ages in this area
include the Putah Tuff (~3.3-3.2 Ma), the tuff
of the Petrified Forest (~3.3-3.4 Ma), and a
local tuff (tuff of the Pepperwood Ranch) dated
at 3.19 Ma (See Tables 1 and 2 and Figure 7 for
detailed age data and uncertainties). Locally,
steeply dipping fluvial gravels with the same
clast suite as the gravels along the Geysers-
Healdsburg road unconformably underlie
the volcanic section of Franz Valley. Basaltic
andesite occurs sporadically and unconform-
ably beneath the tuffs and gravels of Franz
Valley and also higher in the tuff section. The
proximal aspect and connection of the Franz
Valley volcanic section to the Mount St. Helena
eruptive center and its correspondence to the
tuff and gravel section along the Geysers-
Healdsburg road, suggests a displacement
along the Maacama fault zone of between 17.5
and 24 km since ca. 3.2 Ma (Figs. 3, 7, and 14;
Ar/Ar age location 3, Table 1; tephra locations
23 and 13-16, Table 2).
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Basement Displaced across Maacama
Fault Zone

A bedrock-offset relation corroborating Neo-
gene displacement of the Sonoma Volcanics
across the Maacama fault zone restores 21-22 km
of displacement of the Coast Range Ophiolite
from the vicinity of Hopland to the Geyser Peak
area (Fig. 15; Table 3). This restoration aligns the
northwest and southeast contacts of the Geyser
Peak section of the Coast Range Ophiolite to the
northeast, with northwest and southeast contacts
of the ophiolite on the southwest side of the fault
near Hopland (Fig. 15). The mapped extent of the
Hopland ophiolite belt along the southwest side
of the Maacama fault zone corresponds closely
with the width of the Geyser Peak ophiolite sec-
tion along the northeast side of the Maacama
fault zone, providing an elongate 3 + 0.5 km
wide body that is offset 21.5 + 0.5 km along the
Maacama fault zone. The Hopland section, rec-
ognized in this report as part of the Coast Range
Ophiolite, was previously only mapped in recon-
naissance as a west-northwest—trending belt of
serpentinite enclosed by mélange of the Francis-
can Complex (Irwin, 1960).

Reconnaissance of the Hopland area ophio-
lite section indicates that several aspects of its
stratigraphy match that of the upper part of the
Geyser Peak ophiolite section (Fig. 16). Cri-
teria for this correlation include the presence
of a gabbroic intrusive complex overlying ser-
pentinized peridotite, together overlain locally
by a distinctive angular, coarse clastic breccia
of mafic plutonic, volcanic, and volcanopelagic
debris of Jurassic age shed from the underlying
ophiolite. This clastic ophiolitic breccia is over-
lain in both the Hopland and Geyser Peak areas
by turbiditic sandstone and argillite composed
predominantly of mafic detritus (Fig. 16). The
Geyser Peak and Hopland sections of the Coast
Range Ophiolite are typical of a tectonostrati-
graphic terrane of the Coast Range Ophiolite
and lower Great Valley Sequence referred to
as the Elder Creek terrane (Blake et al., 1985;
McLaughlin et al., 1988; Hopson et al., 2008)
that is exposed along the western side of the
Sacramento Valley.

Except for the Hopland section of the Elder
Creek terrane, this distinctive stratigraphy,
including ophiolitic breccia at the base of the
Great Valley Sequence, is unknown west of the
Maacama fault zone. A very different, well-
studied terrane of the Coast Range Ophiolite
plus Great Valley Sequence referred to as
the Healdsburg terrane (Blake et al., 1984;
Hopson et al., 1981, 2008) occurs 25-30 km
south of the Hopland ophiolite and west of
the Maacama and Healdsburg faults and
Alexander and Dry Creek Valleys (Fig. 15).
The Healdsburg terrane includes thick volcano-
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A. GEYSER PEAK AND HOPLAND
SECTIONS OF ELDER CREEK
TERRANE OF COAST RANGE
OPHIOLITE AND GREAT VALLEY
SEQUENCE

Ophiolite-derived
sandstone, shale

Breccia, ophiolite-derived
Tuffaceous chert

Mafic calc-alkaline volcanics
Intrusive gabbro, diabase

Cumulate gabbro, ultramafics
Tectonitic ultramafic rocks

McLaughlin et al.

B. HEALDSBURG TERRANE OF
COAST RANGE OPHIOLITE
AND GREAT VALLEY SEQUENCE

Lithic sandstone,
shale, conglomerate

Arc-related volcanopelagic
section (keratophyric lava,
breccia, tuff, cherty tuff)

Intrusive gabbro, diabase
Cumulate gabbro, ultramafics

Tectonitic ultramafic rocks

(schematic sections, not to scale)

Figure 16. (A) Schematic tectonostratigraphy for sections of the Elder Creek terrane at
Geyser Peak and Hopland that are offset along the Maacama fault zone. (B) Generalized
tectonostratigraphy of Healdsburg terrane on southwest side of Maacama fault zone south of
Hopland, shown for comparison. (Sections are generalized from Blake et al., 1984; Hopson
et al., 1981, 2008; McLaughlin et al., 1988.) See Figure 15 for map locations.

pelagic strata and keratophyric volcanic rocks in
the ophiolite, overlain by Late Jurassic to Early
Cretaceous non-ophiolite—derived conglomerate,
sandstone, and shale (Fig. 16; Blake et al., 1984).

Magnetic Anomalies Displaced across
Maacama Fault Zone

Fault offsets from aeromagnetic data are
essentially based on the same criteria (ophio-
litic or related mafic rocks) used to determine
offset surface contacts of the correlated Geyser
Peak and Hopland outliers of the Coast Range
Ophiolite. Interpreted magnetic offsets, however,
are based on the matching of similar maximum
intensities and configurations of correlated mag-
netic (or nonmagnetic) bodies across the fault.
Also, magnetic anomalies in general often reflect
the geometry of a magnetic body at depth, and as
such do not necessarily correspond with mapped
surface contacts. In spite of these fundamental
differences in how fault displacements are deter-
mined, the geologic and aeromagnetic data sets
for the Maacama fault zone are complementary
and provide similar independent long-term offset
and slip rate estimates.

Separate basement offsets of 15 = 3 km of a
weakly magnetic mélange unit in the Franciscan
Complex and a 21 + 5 km offset of parts of the
Coast Range Ophiolite were obtained by match-
ing magnetic anomalies across the Maacama
fault zone (respectively, anomalies 1-1” and
2-2’, Fig. 17). Offset anomaly 1-1” in Figure 17
corresponds to a mélange unit of the Franciscan
Complex along the Maacama fault zone, which
at the surface contains entrained lenticular bod-
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ies of serpentinite, gabbro, and greenstone. Off-
set anomaly 2-2" (Fig. 17) matches northwest
and southeast limits of an anomaly associated
with the Hopland ophiolite section where it
abuts the southwest side of the Maacama fault
zone, with the projected extent of an anomaly
over the Geyser Peak ophiolite northeast of the
fault zone. The Geyser Peak anomaly is sepa-
rated from the main trace of the Maacama fault
zone by fault strands bounding the strike-slip
basins of Little Sulfur Creek (Fig. 15), and the
fill of these basins obscures the magnetic expres-
sion of truncation of the Geyser Peak anomaly
at the Maacama fault zone.

Maacama Fault Zone Offset and Slip Rates
Results of this study suggest that the Maacama
fault zone has maintained a long-term average
slip rate of ~6.7 + 1.2 mm/yr since ca. 3.17 +
0.04 Ma, based on 17.5-24.0 km of offset of
the Sonoma Volcanics. As discussed herein, the
Maacama fault zone appears to have accom-
modated 6.0 + 0.5 km of slip since 0.8-1.2 Ma,
during Santa Rosa pull-apart basin opening. The
average slip rate of 6.3 £ 1.8 mm/yr since 1.0 +
0.2 Ma (Table 3) is generally comparable to the
rate determined for the Maacama fault zone
based on offset of the Sonoma Volcanics since
3.2 Ma. Geologic displacements of Jurassic
ophiolitic basement across the Maacama fault
zone favor a maximum displacement of ~21.5 +
0.5 km, which is about the same as the offset
of the Sonoma Volcanics (20.9 + 3.4 km). We
therefore suggest an initiation time of ca. 3.17
0.04 Ma for displacement along the Maacama
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fault zone and a long-term slip rate based on the
offset ophiolite sections of 6.9 + 0.4 mm/yr.

Aeromagnetically determined fault displace-
ments are in reasonably close agreement with
the geologically determined displacements,
given the uncertainties associated with the dif-
ferent approaches. Maximum displacements
of 15 + 3 and 21 + 5 km for two separate off-
set magnetic anomaly sets, associated with
the Franciscan Complex and the Coast Range
Ophiolite, respectively, suggest a total long-term
displacement of 19 = 7 km for the Maacama
fault zone, at a rate of 6.0 + 2.3 mm/yr (Fig. 17;
Table 3).

By comparison, geodetic and paleoseis-
mic data along the Maacama fault zone north
of Santa Rosa suggest that its slip rate in the
Holocene has fluctuated between 6.5 and 14
mm/yr (Freymueller et al., 1999; Larsen et al.,
2005; Sickler et al., 2005; Prentice and Fenton,
2005; Simpson, 2005). Local episodic creep
that occurs along the fault both at the surface
and at depth is poorly understood in the context
of modern fault kinematics (Galehouse, 2002;
Freymueller et al., 1999), and the role of creep in
long-term evolution of the fault zone is largely
unknown. For this reason, differences in long-
term displacements and slip rates determined
from the surface geology compared to near term
rates from paleoseismic or geophysical data
may reflect real differences in the kinematics of
the Maacama fault zone over time both at the
surface and at depth, and not merely uncertain-
ties inherent in the comparison of results derived
from geologic versus geophysical approaches.
The data sets presented here suggest there is rea-
sonably close agreement between geologic and
potential field-derived displacement data for the
Maacama fault zone.

CONTRIBUTION TO LONG-TERM
HAYWARD-CALAVERAS
FAULT SYSTEM

The total slip contributed to the Hayward fault
zone by the Rodgers Creek fault zone amounts
to at least 28 + 0.5 km (Table 3). Based on aver-
aged maximum and minimum displacements
of all displacement criteria (Table 3), the Maa-
cama fault zone separately contributes ~20.4 +
3.6 (16.8-24) km (Table 3) of displacement to
the Hayward fault zone southeast of the Sears
Point-Donnell Ranch area via the Bennett Val-
ley fault zone (Figs. 11 and 13; Table 3). At least
44.4-52.5 (48.4 + 1.4) km of slip is therefore
contributed to the Hayward fault zone by the
Rodgers Creek—Maacama stepover fault system
south of the Sears Point-Donnell Ranch area.

Although antiformal axes appear to align
after restoring displacement of a fault scarp
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Figure 17. Aeromagnetic map delineating two sets of magnetic features offset across the
Maacama fault zone. Magnetic intensity is shown in nanoteslas (nT), with increasingly
higher magnetic intensity indicated by warmer colors (nT = 0) and lower magnetic intensity
by cooler colors (nT < 0). Dark blue hollow bars delineate lengths of offset magnetic features
along the Maacama fault zone, from which limits of uncertainty are derived. Magnetic fea-
ture 1-1’, offset 15 + 3 km, with a low to very low magnetic intensity, corresponds at the sur-
face to mélange of the Central Belt of the Franciscan Complex. Magnetic feature 2-2’, offset
21 + 5 km with a high to moderately low magnetic intensity, corresponds to the magnetic
expression of the offset sections of the Coast Range Ophiolite at Geyser Peak (2) and Hop-
land (2’). Truncation of the Geyser Peak ophiolite along the northeast side of the Maacama
fault zone is masked by gravels in Little Sulfur Creek strike-slip basins (Fig. 15). Projection
of the ophiolite beneath these basins to the Maacama fault zone is based on subtle west-
northwest—trending low-intensity lineaments. See text for additional discussion and Table 3.

breccia across the northern and southern Rod-
gers Creek fault zones, the correlation of the
antiform axes is nonunique and their alignment
could be fortuitous. The breccia exposures
east of the Rodgers Creek fault in the Sears
Point area also have an unknown distribution

beneath the alluvium of southern Sonoma Val-
ley. It is not recognized at the surface south of
San Pablo Bay or reported in the subsurface
of San Pablo Bay (Wright and Smith, 1992).
A conservative interpretation of this data set
infers the 28 + 0.5 km offset of the fault scarp
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breccias to be a minimum displacement since
7.0 £ 0.3 Ma (Table 3).

As determined from different geologic cri-
teria, long-term displacement has been 17.5—
24 km and slip rates have been between 5.5
and 7.9 mm/yr on the Maacama fault since ca.
3.17 £ 0.04 Ma (Table 3). Displacement based
on the matching of aeromagnetic anomalies
across the Maacama fault zone yield a similar
range of displacement (12-26 km) and a slip rate
of 6.0 + 2.3 mm/yr, if it is assumed that slip was
initiated at 3.17 + 0.04 Ma.

The total contribution of the Rodgers Creek—
Maacama fault system to slip of the entire East
Bay fault system south of San Pablo Bay since
7.0 £ 0.3 Ma appears to be at least 44.5-52.5 km,
for a median long-term slip rate of 6.95 + 0.85
mm/yr (6.1-7.8 mm/yr). Larger amounts of
slip attributed to the East Bay fault system to
the south are contributed from faults east of the
Hayward fault and probably from poorly con-
strained pre—7 Ma slip on a proto-Hayward fault
zone north of Burdell Mountain.

KINEMATICS OF THE FAULT SYSTEM

Although much of the northern Coast Ranges
is now in compression (Fig. 1; Berry, 1973;
Wentworth et al., 1984; Wentworth and Zoback,
1990; Argus and Gordon 2001) and the San
Andreas fault is curved, with a restraining bend
located at its northernmost end, the restrain-
ing bend is trailed to the south by a prominent
releasing bend configuration (Fig. 1). Some
studies (Stanley, 1987; Wilson et al., 2005) also
suggest that this releasing and restraining bend
configuration of the northern San Andreas fault
has formed the Pacific—North American plate
boundary since some time in the Miocene, and
as such, its northward migration with the Men-
docino Triple Junction should have influenced
successive distributions of transtensional and
transpressional structures for some distance east
of the main plate boundary (the San Andreas
fault). To a first order, this concept may be
valid (that is, strike-slip—related basins become
younger northward east of the San Andreas
fault; Blake et al., 1978; McLaughlin and
Nilsen, 1982; Nilsen and McLaughlin, 1985).

Numerous studies also point to the northward
migration of a slab window beneath the Coast
Ranges as having influenced the distribution
of volcanism and related extension in the crust
(Dickinson and Snyder, 1979; Lachenbruch and
Sass, 1980; Fox et al., 1985; McLaughlin et al.,
1996; Graymer et al., 2002). Thermal response
of the crust to slab window migration may, in
turn, have combined with the migrating releas-
ing bend segment of the northern San Andreas
fault (Fig. 1) to form the northward-younging
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transtensional (strike slip) basins of the Rodgers
Creek—Maacama fault system. Releasing bend-
related extensional fault geometry is viewed
here as a structural element, separate from the
migrating slab window, that provided needed
open conduits and pathways for upward migra-
tion of magma from asthenospheric depths and
for volcanic venting coeval with, or younger
than, the surface faulting.

The Rodgers Creek—Maacama fault system
as characterized here has evolved in conjunction
with lengthening of the San Andreas transform
margin. The fault system evolved as a series
of extensional right steps and northeastward
clockwise splays beginning ca. 7.0 Ma, with the
opening of basins beneath the Santa Rosa Plain.
Several fault zone reorganizations between
ca. 7 Ma and the present are inferred from the
orientations, slip characteristics, and timing of
different fault sets of the northern and southern
Rodgers Creek fault zones. From these relations
we infer a sequence of superposed fault zone
reorganizations that began with extensional
strike slip followed by transpression and uplift,
in turn followed by pure strike slip, and most
recently by younger than 1 Ma reoriented exten-
sional strike-slip faulting (Figs. 2, 3, 9, and 13).

The right-stepped Maacama fault zone exhib-
its a younger overlapping history of at least
two reorganizations beginning ca. 3.2 Ma, with
eruption of the upper part of the Mount St.
Helena eruptive sequence that was accompa-
nied or closely followed northeast of Healds-
burg by initiation of extensional strike-slip
faults of the Maacama fault zone. These faults
bound the basins of Little Sulfur Creek (Fig. 15)
and their associated syntectonic sedimentary
fills (McLaughlin and Nilsen 1982; Nilsen and
McLaughlin, 1985). Deposition in these strike-
slip basins along the Maacama fault zone was
followed by transpression that uplifted, dis-
sected, and compressed the basins. The recent
north-northwest—trending, younger than 1 Ma
extensional strike-slip faults that are associated
with opening of the Santa Rosa pull-apart basin
splay from the Matanzas Creek, Bennett Val-
ley, and Rodgers Creek fault zones. Southeast
of Santa Rosa, these north-northwest—trending
faults overprint earlier, more northwest-oriented
basin-bounding faults of the Maacama fault
zone (Figs. 2, 3,9, and 13).

The long releasing bend in the northern San
Andreas fault zone is currently adjacent to and
west-northwest of the Rodgers Creek—Maacama
fault system, and thus may influence the exten-
sional strike-slip setting of the Rodgers Creek—
Maacama fault system relative to motion of the
Pacific plate. However, the timing and sequence
of reorganizations of the Rodgers Creek—Maa-
cama fault system that we have observed do
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not have a straightforward correspondence with
the regional-scale patterns of compression and
extension associated with bends in the northern
San Andreas fault zone. The succession of exten-
sional and compressional components of the
Rodgers Creek—Maacama fault system with
time instead appears to be a more complicated
response to Mendocino Triple Junction migra-
tion. The reorganized fault geometries seen with
the Rodgers Creek—Maacama fault zone actu-
ally may be initiated sequentially at the south-
ern end of the fault system, as a separate but
necessary response to continual lengthening and
changing of fault geometry at the northern end
of the fault system with triple junction migra-
tion. Local compressional structures also are
shown in laboratory models to be integral parts
of active pull-apart basin settings (e.g., pop-up
structures described by Dooley and McClay,
1997) and thus may not always represent tem-
porally separate transpression.

Other studies (Wells and Simpson, 2001;
Williams et al., 2006) suggest that faulting kine-
matics in the northern Coast Ranges east of the
San Andreas fault are significantly influenced by
basement fault block interactions north and south
of the Mendocino Triple Junction (Fig. 1). Thrust
faults of east-directed structural wedges formed
during early Tertiary plate convergence that
uplifted and unroofed the Mesozoic basement
of the Coast Ranges are examples of preexisting
block boundary structures that can be reactivated
in later transpressional settings and influence
locations and geometries of Quaternary blind
thrusts (Unruh et al., 2004, 2007; Wentworth
et al., 1984; Wentworth and Zoback, 1990). In
contrast, recent seismic experiment results inter-
pret the Maacama and other active strike-slip
faults in the northern Coast Ranges to extend
through the entire crust of the North American
plate (Beaudoin et al., 1998; Hole et al., 1998,
2000; Henstock and Levander, 2003), raising
questions of how the strike-slip faults of the Rod-
gers Creek—-Maacama fault system might inter-
act with reactivated wedge thrusts. The nature of
Mesozoic terrane boundary faults in the upper
to mid-crust and their unknown contribution to
the kinematics of the Rodgers Creek—-Maacama
fault system are beyond the scope of this paper,
but we note their demonstrated significance to
the east along the boundary between the Sacra-
mento Valley and northern Coast Ranges (Unruh
et al., 2004, 2007; Wentworth et al., 1984; Went-
worth and Zoback, 1990).

Comparison to Laboratory Models
Scaled-sandbox models of stepping strike-

slip faults and derived pull-apart basins
(Dooley and McClay, 1997) provide insight
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into several features of the Rodgers Creek—
Maacama stepover fault system. The modeling
shows that northwest-trending principal bound-
ing faults of an evolving dextral right-stepped
fault system initially do not overlap along
strike. Rhombic-shaped pull-apart basins that
form with this geometry of non-overlapping
strike-slip faults have bounding extensional
faults with north-northwest orientations. These
basins are referred to as 30° non-overlapping
releasing sidestep pull-apart basins (Figs. 9 and
10). As the fault system evolves, the principal
strike-slip faults bounding the right step area
lengthen, to where their ends are at 90° to each
other, resulting in a box-shaped basin geometry
referred to as a 90° releasing sidestep pull-apart
basin (Fig. 10). Additional lengthening of the
principal bounding strike-slip faults results in a
right-stepover region, the principal northeastern
and southwestern bounding strike-slip faults of
which overlap considerably along strike (e.g.,
the 150° releasing sidestep pull-apart basin of
Fig. 10). This more highly evolved stage of step-
over fault development possibly is analogous
to some overlapping elements of the Maacama
and northern Rodgers Creek fault zones north
of Santa Rosa. These faults of the Rodgers
Creek and Maacama fault zones exhibit much
longer lengths of overlap and more complex
histories, however, than those in the sandbox
models (Fig. 10).

Comparison to the laboratory models sug-
gests that progressive development of along-
strike overlap in the principal bounding faults
of the Rodgers Creek—Maacama stepover sys-
tem has resulted in the local development of
pull-apart basins of different geometries at dif-
ferent stages in the lengthening of these faults.
The models also suggest that at least some com-
pressional structures adjacent to the pull-aparts
may be coeval pop-ups or flower structures
(Dooley and McClay, 1997). In contrast to this
progression from non-overlapping (immaturely
evolved) to substantial overlapping (maturely
evolved) geometry seen in sandbox models, an
immature, 30° non-overlapping pull-apart basin
geometry is associated with the recently devel-
oped Santa Rosa pull-apart basin. This geom-
etry is apparently related to reorganization of
fault orientations in the stepover, reverting to
a less mature stage of stepover development
that is superposed on the more evolved step-
over geometry seen in the overlapping relation
between the northern Rodgers Creek (Healds-
burg fault segment) and Maacama fault zones
(Figs. 2, 3, 10, and 13).

This pattern of fault zone reorientation may,
to first order, account for abandonment of
some older segments of the southern Maacama
fault zone and further provide the rationale
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for an apparent southwestward migration of
the southern Maacama fault zone toward the
Rodgers Creek and Bennett Valley fault zones
during the recent stepover fault system reor-
ganization. Overlapping faults of the northern
Rodgers Creek and Maacama fault zones that
evolved between ca. 3 and 1 Ma were over-
printed by the immature non-overlapping step-
over geometry of the Santa Rosa pull-apart
basin (Figs. 3, 9, 10, and 13) after ca. 1 Ma
as the result of this reorganization, which as
discussed herein may have been in response to
fault zone lengthening at the northern end of
the fault system closer to the Mendocino Triple
Junction, rather than a direct response to the
releasing bend geometry of the San Andreas
fault zone to the northwest.

CONCLUSIONS

1. The Rodgers Creek fault zone was initi-
ated between ca. 7.3 and 6.7 Ma, when faulting
splayed northeastward from a west-northwest—
oriented proto-Hayward fault zone, forming a
new zone of faults having northwest orienta-
tions. We interpret a distinctive breccia that is
derived from extensional fault scarps along the
east side of Santa Rosa Plain to mark the nor-
mal fault-bounded (transtensional?) margin of
basins beneath the Santa Rosa Plain and the
time of initiation of the Rodgers Creek fault
zone. Extensional displacement on the early
Rodgers Creek fault zone was replaced after
ca. 5.4 Ma by compression and associated east-
directed thrusting that uplifted the east side of
the Santa Rosa Plain. The thrusting and com-
pression partitioned the initial strike-slip basin
beneath the Santa Rosa Plain into the separate
Windsor and Cotati basins.

2. Composite strike-slip fault displacement
for the northern and southern Rodgers Creek
fault zones since ca. 7.0 = 0.3 Ma is 228 +
0.5 km, based on right-lateral separation of the
fault scarp breccia between the Sears Point and
Santa Rosa areas. This displacement is viewed
as a minimum, because the southeastward
extent of fault scarp breccia beneath Sonoma
basin east of the southern Rodgers Creek fault
zone is unknown. The Rodgers Creek fault zone
slipped right-laterally at a median rate of ~2.8 +
1.1 mm/yr from the Late Miocene to early
Pleistocene, but the rate has increased to ~5.3 +
2.2 mm/yr since the earliest Pleistocene. Low
early slip rates reflect significant dip-slip com-
ponents of displacement prior to 2.78 + 0.02 Ma.
A part of the southern Rodgers Creek fault zone
may be partitioning slip toward the Maacama
fault zone via the Spring Valley fault and the
Bennett Valley fault zone at depth. However,
Holocene surface faulting and earthquake dis-

tribution north of Santa Rosa indicate that an
unconstrained component of slip is still taken up
by the Healdsburg fault segment of the northern
Rodgers Creek fault zone along its 40-km-long
map overlap with the Maacama fault zone.

3. Similar surface displacement of the
Sonoma Volcanics (20.8 + 3.3 km) and base-
ment rocks of the Mesozoic Coast Range Ophio-
lite (21.5 = 0.5 km) indicate that the Maacama
fault zone north of Santa Rosa was initiated at or
soon after 3.17 + 0.04 Ma and it has maintained
along-term slip rate of ~5.5-7.9 mm/yr (median
rate of 6.7 + 1.2 mm/yr). Offset magnetic anom-
alies along the Maacama fault zone suggest a
similar maximum displacement of 19 + 7 km
and median long-term rate of 6.0 £ 2.3 mm/yr.
The slip rate since ca. 1.0 = 0.2 Ma has been
~6.3 = 1.8 mm/yr.

4. The total contribution of the Rodgers
Creek—Maacama fault system to slip of the East
Bay fault system south of San Pablo Bay since
7.0 = 0.3 Ma appears to be >48.4 + 1.4 km, for
a median long-term slip rate of at least 6.95 +
0.85 mm/yr. Larger slip attributed to the East
Bay fault system to the south results from slip
contributed from faults east of the Hayward
fault and to poorly constrained pre—7 Ma slip on
the proto-Hayward fault zone north of Burdell
Mountain and southwest of the Rodgers Creek
fault zone.

5. We infer, from comparison to analogous
laboratory generated sandbox models (Dooley
and McClay, 1997), that the most recently orga-
nized geometry of the Rodgers Creek—Maacama
fault system is an immature stage of stepover
fault zone development characterized by north-
northwest—oriented pull-apart basins with prin-
cipal bounding faults that do not overlap. The
immature stepover geometry is superimposed
on an older geometry with principal bounding
strike-slip faults having a more west-northwest
orientation that overlap for ~40 km along strike.
Westward migration of the south end of the
Maacama fault zone since the Pleistocene (ca.
1.2 Ma) may be the result of the superposi-
tion of these successive fault zone geometries.
However, though the transtensional strike-slip
basins of the Rodgers Creek—-Maacama fault
system have evolved within the realm of migrat-
ing major restraining and releasing bends of the
northern San Andreas fault zone, the succession
of the fault system reorganizations is not simply
relatable to the migration of these bend geom-
etries. Superimposed fault reorganizations with
time at the southern end of the Rodgers Creek—
Maacama fault system are probably a more
direct kinematic response to the lengthening and
reorganization of faulting at the northern end
of the fault system, with northward migration of
the Mendocino Triple Junction.
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